SDS7000A Series Digital Storage Oscilloscope

Data Sheet

EN03A

SIGLENT TECHNOLOGIES CO., LTD.

SDS7804AP SDS7604AP SDS7804A H12 SDS7604A H12 SDS7404A H12 SDS7304A H12

Product Overview

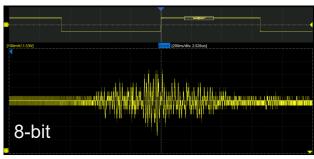
SIGLENT's SDS7000A series Digital Storage Oscilloscopes are available in bandwidths of 8 GHz, 6 GHz, 4 GHz and 3 GHz, have 12-bit ADCs with sample rate up to 20 GSa/s, maximum record length of 2 Gpts/ch, and display up to 4 analog channels + 16 digital channels for high performance mixed signal analysis.

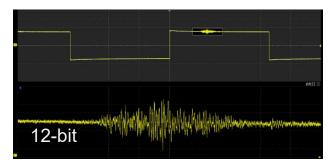
The SDS7000A series employs Siglent's SPO technology with a maximum waveform capture rate of up to 1,000,000 wfm/s, 256-level intensity grading display function plus a color temperature display mode. It also employs an innovative digital trigger system with high sensitivity and low jitter. The trigger system supports multiple powerful triggering modes including serial bus triggering. Tools such as History waveform recording, Search and Navigate functions, Signal Scan, Mask Test, Bode Plot, Power Analysis, Eye/Jitter Analysis and Compliance Test allow for extended waveform records to be captured, stored, and analyzed. An impressive array of measurement and math capabilities, options for a 50 MHz arbitrary waveform generator, as well as serial decoding are also features of the SDS7000A.

The large 15.6" HD display capacitive touch screen supports multi-touch gestures, with the addition of user-friendly UI design, can greatly improve the operational efficiency. It also supports mouse control, and remote web control over LAN

Key Features

- 4 analog channels, up to 8 GHz bandwidth with up to 20 GSa/s sample rate
- 12-bit ADC
- Low background noise: 300 μVrms @ 8 GHz bandwidth, 220 μVrms @ 4 GHz bandwidth
- SPO technology
 - Waveform capture rates up to 1,000,000 wfm/s
 - Supports 256-level intensity grading and color temperature display modes
 - Up to 2 Gpts/ch waveform length (optional, AP models)
 - Digital trigger system
- Intelligent trigger: Edge, Slope, Pulse, Window, Runt, Interval, Dropout, Pattern, Qualified, Nth edge, Setup/hold, Delay and Video (HDTV supported). Zone Trigger simplifies advanced triggering
- Serial bus triggering and decoder, supports protocols I2C, SPI, UART, CAN, LIN, CAN FD, CAN XL, FlexRay, I2S, MIL-STD-1553B, SENT, Manchester, ARINC429 and USB 2.0
- Segmented acquisition (Sequence) mode, dividing the maximum record length into multiple segments (up to 124,000), according to trigger conditions set by the user, with a very small dead time between segments to capture the qualifying event
- History waveform record (History) function, the maximum recorded waveform length is 124,000 frames
- Automatic measurements on 60+ parameters, supports statistics with histogram, track, trend, Gating measurement, and measurements on Math, History and Memory traces
- 4 Math traces (32 Mpts FFT, Filter, addition, subtraction, multiplication, division, integration, differential, square root, etc.), supports formula editor
- Abundant data analysis functions such as Search, Navigate, SignalScan, Digital Voltmeter, Counter, Waveform Histogram, Bode plot, Power Analysis, Eye/Jitter Analysis and Compliance Test
- Spectrum Analyzer mode (A models only)
- High Speed hardware-based Average, ERES; High Speed hardware-based Mask Test function, with Mask Editor tool for creating user-defined masks
- 16 digital channels
- Built-in 50 MHz waveform generator
- Large 15.6" HD TFT-LCD display with 1920 * 1080 resolution; Capacitive touch screen supports multitouch gestures
- Interfaces include: 4x USB Host 3.1 Gen 1, 2x USB 3.0 Host, USB 2.0 Device, 2x 1000M LAN, DVI-D, DP 1.2, HDMI 1.4, Audio, External Triger In, Aux Out (Pass/Fail, Trigger Out), 10 MHz In, 10 MHz Out
- Built-in web server supports remote control over the LAN port using a web browser. Supports SCPI remote control commands. Supports external mouse and keyboard


Models and Key Specifications


Bandwidth Sample rate	8 GHz	6 GHz	4 GHz	3 GHz
20 GSa/s (dual-channel) 10 GSa/s (3 or 4 channels)	SDS7804A H12	SDS7604A H12	SDS7404A H12	SDS7304A H12
20 GSa/s @ all channels	SDS7804AP	SDS7604AP		

Model	A models AP models		
Analog channels	4 + EXT		
Bandwidth	8 GHz, 6 GHz, 4 GHz, 3 GHz	8 GHz, 6 GHz @ all channels	
	8 GHz / 6GHz models limited to 4 GHz in 3 or		
	4 channels modes		
Sample rate (Max.)	20 GSa/s (2 channels)	20 GSa/s @ all channels	
	10 GSa/s (3 or 4 channels)		
Vertical Resolution	12-bit		
	Up to 16-bit in ERES mode		
Memory depth (Max.)	Standard: 500 Mpts/ch	Standard:	
	Optional: 1 Gpts/ch in dual-channel mode	1 Gpts/ch (1 or 2 channels)	
		500 Mpts/ch (3 or 4 channels)	
		Optional:	
		2 Gpts/ch (1 channel)	
		1 Gpts/ch (2 channels)	
		500 Mpts/ch (3 or 4 channels)	
Waveform capture rate (Max.)	1,000,000 wfm/s		
Trigger type	Edge, Slope, Pulse width, Window, Runt, Interval, Dropout, Pattern, Video, Qualified, Nth		
	edge, Setup/hold, Delay, Serial		
Serial trigger and decode	Standard: I ² C, SPI, UART, CAN, LIN		
	Optional: CAN FD, CAN XL(decode only), FlexRay, I ² S, MIL-STD-1553B, SENT, Manchester		
	(decode only), ARINC429, USB 2.0 (decode or	nly)	
Measurement	60+ parameters, statistics, histogram, trend, and track supported		
Math	4 traces		
	32 Mpts FFT, +, -, x, \div , \int dt, d/dt, $$, Identity, Negation, Absolute, Sign, e^x , 10^x , In, Ig,		
	Interpolation, MaxHold, MinHold, ERES, Avera	ge, Filter. Supports formula editor	
Data analysis	Search, Navigate, History, Mask Test, Digital Voltmeter, Counter, Waveform Histogram		
	Bode plot, Power Analysis, Eye/Jitter Analysis, SignalScan, Compliance Test (USB 2.0,		
	100Base-TX, 1000Base-T, 2.5G/5G/10GBase		
	Spectrum Analyzer mode (RTSA/DDC/Sigal a	nalysis, for A models only)	
Digital channel	16-channel; maximum sample rate up to 1 GSa/s; record length up to 50 Mpts		
Waveform generator (optional)	Builit-in, frequency up to 50 MHz, 125 MSa/s sample rate, 16 kpts waveform memory		
Processor System	Intel Core i3-8100 or better, 32 GB memory, 250 GB storage, Linux operating system		
I/O	I/O: 4x USB Host 3.1 Gen 1, 2x USB 3.0 Host, USB 2.0 Device (USBTMC), 2x 1000M LAN (VXI-		
	11+SCPI, Telnet (5024)+SCPI, Socket (5025)+SCPI, LXI, WebServer)		
	Display: 1x DVI-D: up to 1920x1200 @ 60Hz; 1x DP 1.2: up to 4096x2304 @ 60Hz; 1x HDMI		
	1.4: up to 4096x2160 @ 60Hz		
	Audio: Mic input, Audio Output		
D 1 (C) 1 1	Others: External Trigger In, Aux Out (TRIG OL	JT, PASS/FAIL), TU MHz In, TU MHz Out	
Probe (Standard)	500 MHz, 1 probe supplied for each channel		
Display	15.6" HD TFT-LCD with capacitive touch screen (1920*1080)		

Functions & Characteristics

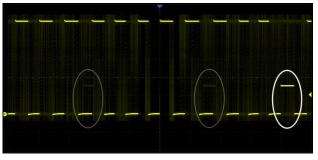
12-bit High Resolution

12-bit resolution shows you more details and less noise on the waveform.

Upgraded processor system

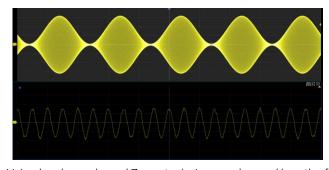
Processor fully upgraded from the embedded ARM processor to the X86 processor, has greatly improved the system response speed and the speed of measurement, calculation, and analysis, presenting more possibilities for the expansion of software analysis functions in the future.

Excellent User Interface and User Experience

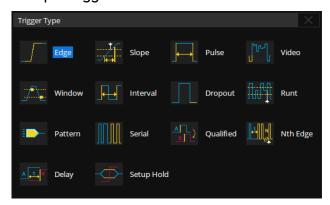

15.6" HD display with 1920*1080 resolution

Capacitive touch screen, supporting multi-touch gestures, can move or scale the waveform traces quickly by finger-touch movements, which greatly improves the operational efficiency

Built-in WebServer supports remote control on a web page over LAN


Supports external mouse and keyboard

High Waveform Update Rate


With a waveform update rate of up to 1,000,000 wfm/s, the oscilloscope can easily capture unusual or low-probability events. In Sequence mode, the waveform capture rate can reach 1,100,000 wfm/s

Deep Record Length


Using hardware-based Zoom technique and record length of up to 2 Gpts, users can select a slower timebase without compromising the sample rate, and then quickly zoom in to focus on the area of interest

Multiple Trigger Functions

Edge, Slope, Pulse, Video, Windows, Runt, Interval, Dropout, Pattern, Qualified, Nth edge, Setup/hold, Delay and serial trigger

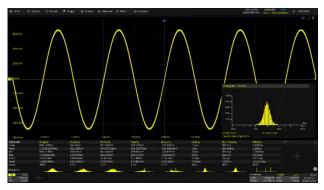
Zone Trigger

Zone Trigger is available for advanced triggering. Combine spatial triggering with common trigger modes to isolate signals of interest

Advanced Math Function

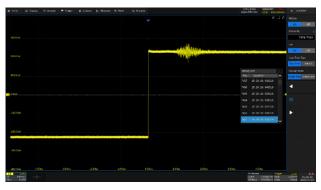
In addition to the traditional (+, -, X, /) operations, FFT, Filter, integration, differential, square root, and more are supported. Formula Editor is available for more complex operations. 4 math traces are available.

Deep Memory FFT

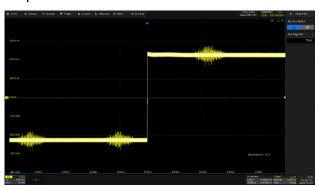

FFT supports up to 32 Mpts operation. This provides high-frequency resolution with a fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs. Three modes (Normal, Average, and Max hold) can satisfy different requirements for observing the power spectrum. Auto peak detection and markers are supported.

Measurements of a Variety of Parameters

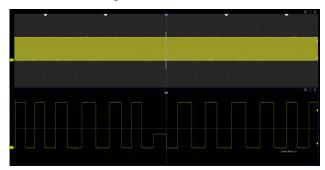
Parameter measurements include 4 categories: horizontal, vertical, miscellaneous, and CH delay providing a total of 60+ different types of measurements. Measurements can be performed within a specified gate period. Measurements on Math, Reference, and History frames are supported


Parameter Statistics Function

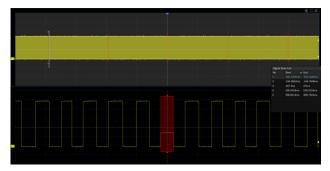
Statistics show the current value, maximum value, minimum value, standard deviation, and mean value of up to 12 parameters simultaneously. A histogram is available to show the probability distribution of a parameter. Trend and Track are available to show the parameter value vs. time.


For horizontal parameters such as period, all results are extracted from a frame, instead of just calculating the first one. This accelerates statistics on horizontal measurements and enables distribution observation in a frame using Histogram and Track

History Mode


History function can record up to 124,000 frames of waveforms. The recording is executed automatically so that the customer can playback the history waveforms at any time to observe unusual events and quickly locate the area of interest using the cursors or measurements. The failed frames of the Mask Test can be stored as history

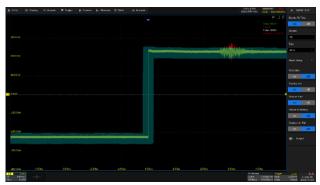
Sequence Mode


Segmented memory collection will store the waveform into multiple memory segments (up to 124,000) and each segment will store a triggered waveform as well the dead time information. The interval between segments can be as small as 0.9 μ s. All of the segments can be played back using the History function

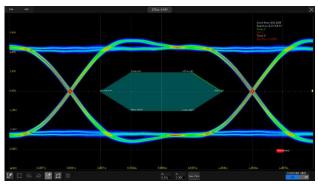
Search and Navigate

The oscilloscope can search events specified by the user in a frame based on hardware. Events flagged by the Search can be recalled automatically using Navigate. It can also navigate by time (delay position) and history frames

SignalScan

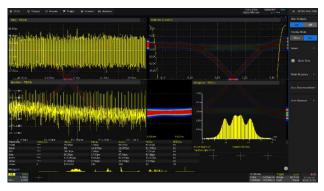

SignalScan automatically searches events by software according to the search conditions set by users, and marks them. Different from hardware search, in SignalScan the supported search conditions are richer, while the scan speed is relatively slower

Serial Bus Decode



Display the decoded characters through the events list. Bus protocol information can be quickly and intuitively displayed in tabular form. I2C, SPI, UART, CAN, LIN, CAN FD, CAN XL, FlexRay, I2S, MIL-STD-1553B, SENT, Manchester, ARINC429 and USB 2.0 are supported

Hardware-based High Speed Mask Test Function


The oscilloscope utilizes a hardware-based Mask Test function, performing up to 80,000 Pass / Fail decisions each second. It is easy to generate user-defined test templates to provide trace mask comparisons, making it suitable for long-term signal monitoring or automated production line testing

Built-in Mask Editor application helps to create custom masks

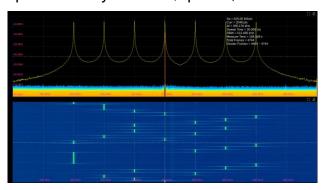
Eye/Jitter Analysis

Supports eye diagram and jitter analysis/measurement. It can automatically extract the embedded reference clock from serial data and create the eye diagram. Measurement on multiple eye/jitter parameters is provided. Mask test on eye diagrams is supported

Compliance Test (Optional)

USB 2.0, 100Base-TX, 1000Base-T, 2.5G/5G/10GBase-T, 100Base-T1, 1000Base-T1, MIPI-DPHY protocol conformance testing are available. When the user sets up the environment according to the prompts, by using the related test fixture, the oscilloscope and related instruments can be automatically set up and related measurement, calculation, decoding and other functions will be used for testing, helping the user to complete each test project quickly and efficiently, and reports are generated automatically.

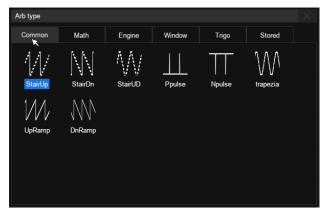
Bode Plot


The oscilloscope can control the Built-in waveform generator, SIGLENT isolated USB AWG module or a standalone SIGLENT SDG generator, to scan the amplitude and phase-frequency response of the DUT, and display the data as a Bode Plot. This makes it possible to replace expensive network analyzers in some applications

Power Analysis (Optional)

The Power Analysis option provides a full suite of power measurements and analysis, which greatly improve the measurement efficiency in switching power supplies and power devices design

Spectrum Analyzer mode (Optional, for A models only)


In the Spectrum Analyzer mode, it supports the functions of a Real-Time Spectrum Analyzer (RTSA) and Digital Down Conversion (DDC). The built-in signal analysis software SigVSA enables direct signal analysis of the output data of the DDC. The supported signal types range from simple Binary Phase Shift Keying (BPSK) to complex broadband signals, such as 4G LTE, 5G NR, IEEE802.11b/a/g/n/ac/ax/be and 4096QAM, and it also has rich measurement functions.

Digital Channels / MSO

Four analog channels plus 16 digital channels enable users to acquire and trigger the waveforms then analyze the pattern, simultaneously with one instrument

Built-in 50 MHz Function/Arbitrary Waveform Generator (Optional)

The oscilloscope can control the built-in waveform generator to output waveform with up to 50 MHz frequency and ± 3 V amplitude. Six basic waveforms plus multiple types of arbitrary waveforms are built-in

5 GHz Active Differential Probe

The SAP5000D differential probe is provided with 5GHz bandwidth, 80 ps rise time, 400 fF differential input capacitance, and 10:1 attenuation ratio

Complete Connectivity

2x USB 3.0 Host, 4x USB Host 3.1 Gen 1, USB 2.0 Device (USBTMC), 2x 1000M LAN (VXI-11+SCPI, Telnet (5024)+SCPI, Socket (5025) +SCPI, LXI, WebServer),

1x DVI-D: up to 1920x1200 @ 60Hz, 1x DP 1.2: up to 4096x2304 @ 60Hz, 1x HDMI 1.4: up to 4096x2160 @ 60Hz

Mic input, Audio Output

External Trigger In, Aux Out (TRIG OUT, PASS/FAIL), 10 MHz In, 10 MHz Out

Specifications

All specifications are not guaranteed unless the following conditions are met:

- · The oscilloscope calibration period is current
- \cdot The oscilloscope has been working continuously for at least 30 minutes at the specified temperature (18°C \sim 28°C)

Acquire (analog)	A models	AP models	
Sample rate	20 GSa/s (2 channels) *1 10 GSa/s (3 or 4 channels)	20 GSa/s @ all channels	
Memory depth *2*3	Standard: Standard: 1 Gpts/ch (1 or 2 channels) 500 Mpts/ch (3 or 4 channels) Optional: 2 Gpts/ch (1 channel) 1 Gpts/ch (2 channels) 500 Mpts/ch (3 or 4 channels)		
Real time signal processing depth	Measure, math, decode, analysis: 100 Mpts/ch max.		
Waveform update rate	1,000,000 wfm/s, 1,100,000 wfm/s in sequence mode		
Intensity grading	256-level		
Peak detect	100 ps		
Average	4, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192		
ERES	Enhanced bit: 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 bit		
Sequence	Up to 124,000 segments, interval between triggers = 0.9 μs min.		
History	Up to 124,000 frames		
Interpolation	sinx/x, x		

^{* 1: 2} channels: C1/C2 are not both active, and C3/C4 are not both active

^{* 3:} When digital channels are active, the memory depth is 50 Mpts/ch

Vertical (analog)	SDS7804AP SDS7804A H12	SDS7604AP SDS7604A H12	SDS7404A H12	SDS7304A H12
Channel	4 + EXT			
Bandwidth (-3dB) @ 50Ω	8 GHz*1*2	6 GHz*1*2	4 GHz	3 GHz
Rise time@50Ω	58 ps typical < 65 ps ^{*1 *2}	68 ps typical < 75 ps *1*2	116 ps typical < 125 ps	130 ps typical < 150 ps
Bandwidth (-3dB) @ 1 $M\Omega$, with probe	500 MHz			
Bandwidth (-3dB) @ 1 M Ω , with external 50 Ω	300 MHz			
Resolution	12-bit			
Bandwidth in ERES mode (typical)	Enhanced bits: 0.5: 0.25*Sample rate, up to the analog bandwidth 1: 0.115*Sample rate, up to 2.3 GHz, limited by the analog bandwidth 1.5: 0.055*Sample rate, up to 1.1 GHz, limited by the analog bandwidth			

^{* 2:} In Average and Hi-Res modes, the memory depth is 25 Mpts/ch

	2: 0.028*Sample rate, up to 560 MHz			
	2.5: 0.014*Sample rate, up to 280 MHz			
	3: 0.007*Sample rate, up to 140 MHz			
	3.5: 0.0035*Sample rate, up to 70 MHz			
	4: 0.0017*Sample rate	e, up to 34 MHz		
Noise floor (rms,50Ω,typi		I	I	
≤ 5 mV/div	300 μV	260 μV	220 μV	200 μV
10 mV/div	340 μV	300 μV	237 μV	214 μV
20 mV/div	490 μV	430 μV	280 μV	255 μV
50 mV/div	1.0 mV	900 μV	635 μV	564 μV
100 mV/div	2.0 mV	1.7 mV	1.01 mV	935 μV
200 mV/div	5.5 mV	4.2 mV	3.06 mV	2.68 mV
500 mV/div	11 mV	8.9 mV	6.84 mV	5.89 mV
1 V/div	20 mV	16 mV	10.65 mV	9.58 mV
ENOB*3 (typical)	6.9-bit	7.1-bit	7.3-bit	7.5-bit
Range	8 divisions	1	1	
Vertical scale (probe 1X)	1 MΩ: 1 mV/div – 10 V	1 MΩ: 1 mV/div – 10 V/div		
vertical scale (probe 17)	50 Ω: 1 mV/div - 1 V/d	div		
	1 mV/div ~ 4.95 mV/d		1 mV/div ~ 4.95 mV/d	
DC gain accuracy	5 mV/div ~ 10 V/div: ±1.5% FS max. ±0.5% FS			
	typical typical			
Offset accuracy		ting + 0.5% of full scale -	+ 0.02% of max offset +	1mV)
	1MΩ: 1 mV/div ~ 5 mV/div: ±1.6 V; 5.1 mV/div ~ 10 mV/div: ±4 V; 10.2 mV/div ~ 20 mV/div:±8 V;			
	$20.5 \text{ mV/div} \times 100 \text{ mV/div} \times 160 \text{ V}$, $10.2 \text{ mV/div} \times 100 $			
		±160 V; 1.02 V/div ~ 10		
Offset range (probe 1X)	20011111/0111	=100 v, 1.02 v/aiv 10	V/GIV. =400 V	
	50Ω:			
	1 mV/div ~ 5 mV/div:	±1.6 V; 5.1 mV/div ~ 10	mV/div: ±4 V; 10.2 mV	/div ~ 20 mV/div:±8 V;
	20.5 mV/div ~ 1 V/div:	±10 V		
Bandwidth limit	25 MHz±20%, 200 MH	z±20%, Custom		
Low frequency response	6 Hz (typical)			
(AC coupling -3 dB)	ο πε (τγρισαί)			
Coupling	DC, AC, GND			
Impedance	$(1 M\Omega \pm 2\%) \parallel (15 pF \pm 3 pF)$			
·	50 Ω: 50 Ω ± 2%			
Max. Input voltage	1 M Ω \leq 400 Vpk(DC + AC), DC \sim 10 kHz 50 Ω \leq 5 Vrms, \pm 10V Peak			
SFDR	≥ 45dBc			
CH to CH	60 dB up to 500 MHz			
Isolation (@50Ω)	40 dB up to 6 GHz			
Probe Attenuation	1X, 10X, 100X, custom			
* 1 · Ephancod Pandwidth - ON				

^{* 1:} Enhanced Bandwidth = ON, and Type = Best Flatness

^{* 2:} For A models: in 3 or 4 channels mode the bandwidth is limited to 4 GHz and the rise time is correspondingly limited because the sample rate is limited to 10 GSa/s. For AP models no such limitation

^{* 3:} 50Ω , 50 mV/div, 20 GSa/s, -1 dBFS/47.999 MHz input

Horizontal	SDS7804AP SDS7804A H12	SDS7604AP SDS7604A H12	SDS7404A H12	SDS7304A H12
Time scale	0.05 ns/div - 1000 s/d	0.05 ns/div – 1000 s/div		
Range	10 divisions	10 divisions		
Display mode	Y-T, X-Y, Roll	Y-T, X-Y, Roll		
Roll mode	≥ 50 ms/div			
Skew (C1~C4)	± 50 ps	± 50 ps ± 100 ps		
	Standard (TCXO): ±2 p	opm initial (0~50°C); ±0.5	5 ppm 1st year aging; ±3	3 ppm 20-year aging
Time base Accuracy	Optional (OCXO): ±1	00 ppb initial (25°C); ±1	l ppb over temperature	(0~50°C); ±50 ppb 1st
	year aging			

Trigger				
Mode	Auto, Normal, Sing	le		
	Internal: ±4.5 div from the center of the screen			
Level	EXT: ± 0.61 V	EXT: ± 0.61 V		
	EXT/5: ± 3.05 V			
Ext Trigger Channel	1 M Ω ≤ 42 Vpk			
input voltage	50 Ω ≤ 5 Vrms	50 $\Omega \leq 5 \text{ Vrms}$		
Hold off range	By time: 4 ns ~ 30 s	s (4 ns step)		
Tiold off farige	By event: 1 ~ 108			
	C1 ~ C4			
		ponents of the signal		
		nponents and attenuates	-	
		he frequency componen		
		the frequency componen	ts above 1.3 MHz	
Coupling	Noise RJ: Increases	s the trigger hysteresis		
	EXT			
		ponents of the signal		
		nponents and attenuates	-	
	LFRJ: Attenuates the frequency components below 500 kHz			
		he frequency componen	its above 1.8 MHz	
Accuracy (typical)	C1 ~ C4: ±0.2 div EXT: ±0.3 div			
	EX1. ±0.3 div		Noise RJ = OFF	Noise RJ = ON
	C1 ~ C4 (50Ω):	> 10 mV/div	0.8 div	1.0 div
	C1 ~ C4 (50(2).			
		≤ 10 mV/div	2.4 div	2.6 div
Sensitivity	C1 ~ C4 (1MΩ):	> 5 mV/div	0.5 div	0.7 div
Sensitivity		≤ 5 mV/div	1.5 div	1.7 div
	EXT:	200 mVpp, DC ~ 10 MHz		
		300 mVpp, 10 MHz ~ bandwidth (300 MHz)		
	EXT/5:	1 Vpp, DC ~ 10 MHz		
	C1 C4	1.5 Vpp, 10 MHz ~ bar	nawiath (300 MHZ)	
	C1 ~ C4:			
	< 9 ps RMS (typical) for ≥ 300 MHz sine and ≥ 6 divisions peak to peak amplitude for vertical			
Jitter	gain settings from 2.5 mV/div to 10 V/div			
	< 5 ps RMS (typical) for ≥ 500 MHz sine and ≥ 6 divisions peak to peak amplitude for vertical gain settings from 2.5 mV/div to 10 V/div			
	gain settings from 2.5 mV/div to 10 V/div EXT: < 50 ps rms			

	Pre-Trigger: 0 ~ 100% memory
Displacement	Delay-Trigger: 0 ~ 10,000 div
	Up to 2 zones
Zone	Source: C1 ~ C4
	Property: Intersect, Not Intersect
Edge Trigger	
Source	C1 ~ C4/ EXT/ (EXT/5)/ AC Line/ D0~D15
Slope	Rising, Falling, Rising & Falling
Slope Trigger	
Source	C1~C4
Slope	Rising, Falling
Limit range	<, >, in range, out of range
Time range	2 ns ~ 20 s, Resolution = 0.2 ns
Pulse Width Trigger	·
Source	C1~C4/D0~D15
Polarity	+wid, -wid
Limit range	<, >, in range, out of range
Time range	2 ns ~ 20 s, Resolution = 0.2 ns
Video Trigger	
Source	C1 ~ C4
Standard	NTSC, PAL, 720p/50, 720p/60, 1080p/50, 1080p/60, 1080i/50, 1080i/60, Custom
Synchronization	Any, Select
Trigger Condition	Line, Field
Window Trigger	
Source	C1 ~ C4
Window type	Absolute, Relative
Interval Trigger	
Source	C1 ~ C4 / D0 ~ D15
Slope	Rising, Falling
Limit range	<, >, in range, out of range
Time range	2 ns ~ 20 s, Resolution = 0.2 ns
Dropout Trigger	
Source	C1 ~ C4 / D0 ~ D15
Timeout type	Edge, State
Slope	Rising, Falling
Time range	2 ns ~ 20 s, Resolution = 0.2 ns
Runt Trigger	
Source	C1 ~ C4
Polarity	Positive, Negative
Limit range	<, >, in range, out of range
Time range	2 ns ~ 20 s, Resolution = 0.2 ns
Pattern Trigger	
Source	C1 ~ C4 / D0 ~ D15
Pattern Setting	Don't Care, Low, High
Logic	AND, OR, NAND, NOR

Limit range	<, >, in range, out of range
Time range	2 ns ~ 20 s, Resolution = 0.2 ns
Qualified Trigger	
Туре	State, State with Delay, Edge, Edge with Delay
Qualified Source	C1 ~ C4 / D0 ~ D15
Edge Trigger Source	C1 ~ C4 / D0 ~ D15
Nth Edge Trigger	
Source	C1 ~ C4 / D0 ~ D15
Slope	Rising, Falling
Idle time	8 ns ~ 20 s, Resolution = 0.2 ns
Edge Number	1 ~ 65535
Delay Trigger	
Source A	C1 ~ C4 / D0 ~ D15
Source B	C1 ~ C4 / D0 ~ D15
Slope	Rising, Falling
Limit range	<, >, in range, out of range
Time range	2 ns ~ 20 s, Resolution = 0.2 ns
Serial Trigger	
Source	C1 ~ C4 / D0 ~ D15
Protocol	Standard: I2C, SPI, UART, CAN, LIN
11010001	Optional: CAN FD, FlexRay, I2S, MIL-STD-1553B, SENT, ARINC429
I ² C	Type: Start, Stop, Restart, No Ack, EEPROM, Address & Data, Data Length
SPI	Type: Data
UART	Type: Start, Stop, Data, Parity Error
CAN	Type: All, Remote, ID, ID+Data, Error
LIN	Type: Break, Frame ID, ID+Data, Error
CAN FD (Optional)	Type: Start, Remote, ID, ID+Data, Error
FlexRay (Optional)	Type: TSS, Frame, Symbol, Errors
l ² S (Optional)	Type: Data, Mute, Clip, Glitch, Rising Edge, Falling Edge
MIL-STD-1553B (Optional)	Type: Transfer, Word, Error, Timing
SENT (Optional)	Type: Start, Slow channel, Fast channel, Error
ARINC429 (Optional)	Type: Word Start, Word End, Label, Label+Data, Error, Any Bit, Any Bit of 0, Any Bit of 1

Serial Decoder	
Decoders	2
Threshold	-4.1 ~ 4.1 div
List	1 ~ 7 lines
Decoder type	Full duplex
I ² C	
Source	C1 ~ C4 / D0 ~ D15
Signal	SCL, SDA
Address	7-bit, 10-bit
SPI	

Cource	C1 ~ C4 / D0 ~ D15
Source	
Signal	CLK, MISO, MOSI, CS
Edge Select	Rising, Falling
Chip select	Active high, Active low, Clock timeout
Bit Order	LSB, MSB
UART	
Source	C1 ~ C4 / D0 ~ D15
Signal	RX, TX
Data Width	5-bit, 6-bit, 7-bit, 8-bit
Parity Check	None, Odd, Even, Mark, Space
Stop Bit	1-bit, 1.5-bit, 2-bit
Idle Level	Low, High
Bit Order	LSB, MSB
CAN	
Source	C1 ~ C4 / D0 ~ D15
LIN	
LIN Version	Ver 1.3, Ver 2.0
Source	C1 ~ C4 / D0 ~ D15
Baud Rate	600 bps, 1200 bps, 2400 bps, 4800 bps, 9600 bps, 19200 bps, Custom
CAN FD (Optional)	
Source	C1 ~ C4 / D0 ~ D15
Nominal Baud Rate	10 kbps, 25 kbps, 50 kbps, 100 kbps, 250 kbps, 1 Mbps, 2 Mbps, 5 Mbps, 8 Mbps, 10 Mbps, Custom
Data Baud Rate	500 kbps, 1 Mbps, 2 Mbps, 5 Mbps, 8 Mbps, 10 Mbps, Custom
CAN XL (Optional)	
Source	C1 ~ C4 / D0 ~ D15
Туре	SIC Mode/Fast Mode
Nominal Baud	10 kbps, 25 kbps, 50 kbps, 100 kbps, 250 kbps, 1 Mbps, 2 Mbps, 5 Mbps, 8 Mbps, 10 Mbps, Custom
FD Baud	500 kbps, 1 Mbps, 2 Mbps, 5 Mbps, 8 Mbps, 10 Mbps, Custom
XL Baud	500 kbps, 1 Mbps, 2 Mbps, 5 Mbps, 8 Mbps, 10 Mbps, 12 Mbps, 15 Mbps, 20 Mbps, Custom
FlexRay (Optional)	
Source	C1 ~ C4 / D0 ~ D15
Baud Rate	2.5 Mbps, 5 Mbps, 10 Mbps, Custom
I ² S (Optional)	
Source	C1 ~ C4 / D0 ~ D15
Signal	BCLK, WS, DATA
Audio Variant	Audio-I2S, Audio-LJ, Audio-RJ
Start Bits	0~31
Data Bits	1~32
MIL-STD-1553B (Option	nal)
Source	C1 ~ C4
SENT (Optional)	
Source	C1 ~ C4 / D0 ~ D15

Manchester (Optional)	
Source	C1 ~ C4
Baud Rate	500 bps ~ 5 Mbps

Measurement		
Automatic Measurement		
Source	C1 ~ C4, D0 ~ D15, Z1 ~ Z4, F1 ~ F4, M1 ~ M4, History	
Mode	Simple, Advanced	
Range	Screen Gated: inside screen, definable with separate Gate cursors	
Custom Threshold	Upper, Middle, Lower	
No. of Measurements	Display 12 measurements at the same time (Display mode = M2)	
Vertical Parameters	Max, Min, Pk-Pk, Top, Base, Amplitude, Mean, Cycle Mean, Stdev, Cycle Stdev, RMS, Cycle RMS, Median, Cycle Median, FOV, FPRE, ROV, RPRE, Level@Trigger, UpperLower	
Horizontal Parameters	Period, Frequency, Time@max, Time@min, +Width, -Width, 10-90%Rise time, 90-10%Fall time, Rise time, Fall time, +Burst Width, -Burst Width, +Duty Cycle, -Duty Cycle, Delay, Time@Middle, Cycle-Cycle jitter	
Miscellaneous Parameters	+Area@DC, -Area@DC, Area@DC, Absolute Area@DC, +Area@AC, -Area@AC, Absolute Area@AC, Cycles, Rising Edges, Falling Edges, Edges, Positive pulses, Negative pulses, Positive Slope, Negative Slope	
Delay Parameters	Phase, FRFR, FRFF, FFFR, FFFF, FRLR, FRLF, FFLR, FFLF, Skew, tsu@R, tsu@F, th@R, th@F, \(\Delta\) time1~4	
Statistics	Current, Mean, Min, Max, Sdev, Count; Histogram, Trend, Track	
Statistics Count	Unlimited, 1~1024	
Statistics Count in one frame	Up to 100,000	
Cursors		
Source	C1 ~ C4, Z1 ~ Z4, D0 ~ D15, F1 ~ F4, M1 ~ M4, Histogram	
Туре	Manual: Time MX1-MX8; Vertical MY1-MY8 Track: TX1-TX8 Measure: MEA1-MEA4, indicate the measurement on specific parameter XY: XY_X1, XY_X2, XY_Y1, XY_Y2	

Math	
Trace	F1, F2, F3, F4
Source	C1 ~ C4, F1 ~ F4, M1 ~ M4
Operation	FFT(Magnitude, Phase), +, -, x, \div , $\int dt$, d/dt , $\sqrt{\ }$, Identity, Negation, Ixl, Sign, ex, 10x, In, Ig, Interpolation, Tan, Atan, Max hold, Min hold, Delay, Envelope, ERES, Average, Filter, Formula Editor
FFT	Length: 32 Mpts, 16 Mpts, 8 Mpts, 4 Mpts, 2 Mpts, 1 Mpts, 512 kpts, 256 kpts, 128 kpts, 64 kpts, 32 kpts, 16 kpts, 8 kpts, 4 kpts, 2 kpts Window: Rectangular, Blackman, Hanning, Hamming, Flattop, Blackman-Harris, Gaussian Mode: Normal, Max hold, Average Tools: Peaks, Markers

Analysis	
Search	
Source	C1 ~ C4, History
Mode	Edge, Slope, Pulse, Interval, Runt
Copy setting	Copy from trigger, Copy to trigger
SignalScan	, , , , , , , , , , , , , , , , , , , ,
Source	C1 ~ C4, F1 ~ F4, M1 ~ M4, D0 ~ D15
Mode	Edge, Non-monotonic, Runt, Measure, Serial pattern, Bus pattern, Protocol Decode
Navigate	
Туре	Search event, Time, History frame
Mask Test	
Source	C1 ~ C4, Z1 ~ Z4
Mask creating	Auto (Create mask), Customized (Mask Editor)
Mask test speed	Up to 80,000 frames/s
DVM	
Source	C1 ~ C4
Mode	DC mean, DC RMS, AC RMS, Peak-peak, Amplitude
Plot	Bar, Histogram, Trend
Gate	20 ms
Bode Plot	
Source	C1 ~ C4
	Built-in waveform generator,
Supported signal	SAG1021I (Connection: USB),
sources	SDG series waveform generators (Connection: USB, LAN)
Sweep type	Simple, Vari-level
Frequency	Mode: Linear, Logarithmic
	Range: 10 Hz ~ 120 MHz
Measure	Upper cutoff frequency, Lower cutoff frequency, Bandwidth, Gain margin, Phase margin
Power Analysis (optional)	
Measure	Power quality, Current Harmonics, Inrush current, Switching loss, Slew rate, Modulation, Output ripple, Turn on/turn off, Transient response, PSRR, Efficiency, SOA
Histogram	
Source	C1 ~ C4
Туре	Horizontal, Vertical, Both
Counter	
Source	C1 ~ C4
Frequency resolution	7 digits
Totalizer	Counter on edges, supports Gate and Trigger
Eye Diagram (optional)	
Source	C1 ~ C4
Clock recovery	Constant frequency, PLL(first-order, second-order)
Measure	Eye height, "1"level, "0"level, Eye amplitude, Eye width, Eye crossing, Average power, Q factor, TIE
Mask Test	Supported
Jitter Analysis (optional)	

Source	C1 ~ C4
Clock recovery	Constant frequency, PLL(first-order, second-order)
Measure	Period, Frequency, +Width, -Width, +Duty cycle, -Duty cycle, Cycle-cycle jitter, Cycle-cycle
	+width, Cycle-cycle -Width, Cycle-cycle +Duty cycle, Cycle-cycle -Duty cycle, Bit Rate, Unit
	interval
Jitter decomposition	TIE, RJ, DJ, DCD, DDJ, PJ, TJ@BER
Sitter decomposition	Statistics: Histogram, Track, Spectrum
Spectrum Analyzer mode	(optional, for A models only)
Source	C1 ~ C4
Bandwidth	125 MHz, 250 MHz, 500 MHz, 1 GHz
FFT length	RTSA = ON: 2 k
rri lengui	RTSA = OFF: 2 k, 4 k, 8 k, 16 k, 32 k, 64 k, 128 k, 256 k, 512 k, 1 M, 2 M, 4 M, 8 M
FFT windows	Rectangular, Blackman, Hanning, Hamming, Flattop, Blackman-Harris, Gaussian
	Sweep time: 30 ms ~ 50 s
RTSA	View: Density, Spectrogram, 3D, 3D+Spectrogram, Density+Spectrogram
	POI: 1.76 μs @ 500 MHz bandwidth
Trace Type	RTSA = ON: Clear Write, Max Hold, Min Hold, Average, Blank
тисс турс	RTSA = OFF: Clear Write, Max Hold, Min Hold, Average, View, Blank
Detect Type	Pos Peak, Neg Peak, Average, Sample
Trigger	RTSA = ON: Free Run, Frequency Mask Trigger
Trigger	RTSA = OFF: Free Run, IF Magnitude
DDC data	Format: I/Q
	Length = 2 k - 8 M
	Can be saved or directly called and analyzed by SigVSA software on the device
Signal analysis	Built-in SigVSA software. See SigVSA's data sheet for details

Compliance Test(O	ptional)
Specification	USB 2.0 Electrical Compliance Test Specification, Version 1.07
Items	EL_1, EL_2, EL_3, EL_4, EL_5, EL_6, EL_7, EL_9, EL_16, EL_17, EL_18, EL_21, EL_22, EL_23,
	EL_25, EL_27, EL_28, EL_29, EL_31, EL_33, EL_34, EL_35, EL_38, EL_39, EL_40, EL_41,
	EL_42, EL_43, EL_44, EL_45, EL_46, EL_47, EL_48, EL_55
Specification	100Base-TX
Items	AOI Template, Peak Voltage (POS, NEG, Signal Amplitude Symmetry), Overshoot (POS,
	NEG), Rise/Fall Times (POS Rise Time, Pos Fall Time, POS Rise/Fall Symmetry, NEG Rise
	Time, NEG Fall Time, NEG Rise/Fall Symmetry, Overall Rise/Fall Symmetry), Duty Cycle
	Distortion, Peak to Peak Transmit Jitter, Return Loss (Transmitter Return Loss, Receiver
	Return Loss)
Specification	1000Base-T
Items	No Disturber Peak Output Voltage (Point A, Point B, Difference A and B, Point C, Point D),
	No Disturber Droop(Point G, Point J), No Disturber Templates(Point A, Point B, Point C,
	Point D, Point F, Point H), No Disturber Transmitter Distortion(no TX_TCLK, with TX_TCLK),
	With Disturber Peak Output Voltage (Point A, Point B, Difference A and B, Point C, Point D),
	With Disturber Droop (Point G, Point J), With Disturber Templates (Point A, Point B, Point C,
	Point D, Point F, Point H), With Disturber Transmitter Distortion (no TX_TCLK, with
	TX_TCLK), No TX_TCLK Master Jitter (Filtered, Unfiltered), No TX_TCLK Slave Jitter (Filtered,
	Unfiltered), Master JTXOUT, With TX_TCLK Master Jitter (Filtered, Unfiltered), Slave
	JTXOUT, With TX_TCLK Slave Jitter (Filtered, Unfiltered), Return Loss, Common-mode
	Output Voltage

Specification	2.5G/5G/10GBase-T (IEEE 802.3-2018)
Items	Maximum Output Droop (Maximum Output Droop Positive, Maximum Output Droop Negative), Transmitter Timing Jitter-Master, Transmit Clock Frequency, Transmitter Linearity (Tone1, Tone2, Tone3, Tone4, Tone5), Transmitter NonLinear Distortion (Tone1, Tone2, Tone3, Tone4, Tone5, Only 2.5GBase-T), Power Tests (PSD, Power Level), MDI Return Loss, Transmitter Timing Jitter-Slave
Specification	100Base-T1
Items	Transmitter Output Droop (Transmitter Output Droop(POS)/Transmitter Output Droop (NEG)), Master Transmitter Clock Frequency And Timing Jitter (Master Transmitter Clock Frequency/Master Transmitter Timing Jitter), TX_TCLK Frequency And Timing Jitter (TX_TCLK Frequency/TX_TCLK Timing Jitter), Transmitter Distortion, MDI Return Loss, MDI Mode Conversion Loss, Transmitter Power Spectral Density And Peak Differential Output (Transmitter Power Spectral Density/Transmitter Peak Differential Output), MDI Common Mode Emission
Specification	1000Base-T1
Items	TX_TCLK125 Tests (TX_TCLK125 Frequency/Master TX_TCLK125 RMS Jitter/ Master TX_TCLK125 Peak-to-Peak Jitter/Slave TX_TCLK125 RMS Jitter/ Slave TX_TCLK125 Peak-to-Peak Jitter), Transmit Clock Frequency And MDI Jitter (Transmit Clock Frequency(Master) / MDI Output RMS Jitter(Master)/MDI Output Peak-to-Peak Jitter(Master)), Transmitter Distortion, MDI Return Loss, MDI Mode Conversion Loss, Transmitter Power Spectral Density And Peak Differential Output(Transmitter Power Spectral Density/Transmitter Peak Differential Output), Transmitter Output Droop(Transmitter Output Droop(POS)/Transmitter Output Droop(NEG))
Specification	MIPI-DPHY (CTS Version 1.0)
Items	GROUP 1: Data Lane LP-TX Signaling Requirements GROUP 2: Clock Lane LP-TX Signaling Requirements GROUP 3: Data Lane HS-TX Signaling Requirements GROUP 4: Clock Lane HS-TX Signaling Requirements GROUP 5: HS-TX Clock-To-Data Lane Timing Requirements GROUP 6: Eye Test

Digital Channels	
Max. Sampling Rate	1 GSa/s
Memory Depth	50 Mpts/ch
Min. Detectable	3.3 ns
Pulse Width	
Level Group	D0~D7, D8~D15
Level Range	-10 V ~ 10 V
Logic Type	TTL, CMOS, LVCMOS3.3, LVCMOS2.5, Custom
Skew	D0 ~ D15: ±1 sampling interval
	Digital to Analog: ± (1 sampling interval +1 ns)

Waveform Generator (Opt	ional)
Channels	1
Max. Output Frequency	50 MHz
Sampling Rate	125 MSa/s
Frequency Resolution	1 μHz
Frequency Accuracy	±50 ppm
Vertical Resolution	14 bit
	$-1.5 \text{ V} \sim +1.5 \text{ V}$ (into 50 Ω)
Amplitude Range	-3 V ~ +3 V (into High-Z)
Waveforms	Sine, Square, Ramp, Pulse, DC, Noise, 45 Arbitrary
Output Impedance	50 Ω ± 2%
Protection	Over voltage protection, Current limit
Sine	
Frequency	1 μHz ~ 50 MHz
Offset accuracy (10 kHz)	±(1%*offset setting value +3 mVpp)
Amplitude flatness	± 0.3 dB, compare to 10 kHz, 2.5 Vpp into 50 Ω
	DC ~ 1 MHz -60 dBc
SFDR	1 MHz ~ 5 MHz -55 dBc
	5 MHz ~ 25 MHz -50 dBc
Harmonic distortion	DC ~ 5 MHz
C (D. l.	5 MHz ~ 25 MHz -45 dBc
Square/Pulse	4.11. 40.441
Frequency	1 μHz ~ 10 MHz
Duty cycle	1% ~ 99%
Edge	< 24 ns (10% ~ 90%)
Overshoot	< 3% (typical, 1 kHz, 1 Vpp)
Pulse width	> 50 ns
Jitter (cycle-cycle)	< 500 ps + 10 ppm
Ramp	
Frequency	1 μHz ~ 300 kHz
Linearity	< 0.1% of Pk-Pk (typical, 1 kHz, 1 Vpp, 50% symmetry)
Channels	0% ~ 100%
DC	
Offset range	$\pm 1.5 \text{ V (into } 50 \Omega)$
	±3 V (into Hi-Z)
Accuracy	±(lsetting valuel*1% + 3 mV)
Noise	OF MIL
Bandwidth (-3 dB)	>25 MHz
Arb	
Frequency	1 μHz ~ 5 MHz
Waveform memory	16 kpts
Sample rate	125 MSa/s
Wave import	From EasyWaveX, from U-disk, directly from waveform data of analog channels

Processor system	
CPU	Intel Core i3-8100 or better
Memory	32 GB DDR4
Storage	250 GB SSD or better
Operating system	Linux

1/0	
Front	2x USB 3.0 Host,
	Calibration signal for passive probe: 1 kHz, 3 V Square
	4x USB Host 3.1 Gen 1, 2x 1000M LAN (VXI-11+SCPI, Telnet (5024) +SCPI, Socket (5025)
	+SCPI, LXI, WebServer)
Side	1x DVI-D: up to 1920x1200 @ 60Hz, 1x DP 1.2: up to 4096x2304 @ 60Hz, 1x HDMI 1.4: up to
	4096x2160 @ 60Hz
	Mic input, Audio Output
Rear	USB 2.0 Device (USBTMC)
	External trigger in, EXT: ≤1.5 Vrms, EXT/5: ≤ 7.5Vrms,
	Aux out: TRIG OUT(3.3 V LVCMOS), PASS/FAIL OUT(3.3 V TTL),
	10 MHz In, 10 MHz Out
	AWG

Display	
Display Type	15.6 HD TFT LCD with capacitive touch screen
Resolution	1920×1080

Display Setting	
Range	8 x 10 grid
Multiple-window	1x1, 2x1, 4x1, 1x2, 2x2, 4x2, 3x3
Display Type	Dot, Vector
Persistence Time	OFF, 0.1 s, 0.2 s, 0.5 s, 1 s, 5 s, 10 s, 30 s, infinite
Color Display	Normal, Color; Supports customer trace color
Language	Simplified Chinese, Traditional Chinese, English, French, Japanese, German, Spanish,
	Russian, Italian, Portuguese
Built-in Help System	Simplified Chinese, English

Environmental			
Temperature	Operating: $0 ^{\circ}\text{C} \sim 50 ^{\circ}\text{C}$ Non-operating: $-30 ^{\circ}\text{C} \sim 60 ^{\circ}\text{C}$		
Humidity	Operating: $5\% \sim 90\%$ RH, 30 °C, degraded to 50% RH at 40 °C Non-operating: $5\% \sim 95\%$		
Altitude	Operating: ≤ 3,048 m, 25 °C Non-operating: ≤12,192 m		
	Meets EMC directive (2014/30/EU), meets or exceeds IEC 61326-1:2012/EN61326-1:2013 (Basic)		
	Conducted disturbance	CISPR 11/EN 55011	CLASS A group 1 150 kHz-30 MHz
	Radiated disturbance	CISPR 11/EN 55011	CLASS A group 1 30 MHz-1 GHz
	Electrostatic discharge (ESD)	IEC 61000-4-2/EN 61000-4-2	4.0 kV (Contact),8.0 kV (Air)
Electromagnetic Compatibility	Radio-frequency electromagnetic field Immunity	IEC 61000-4-3/EN 61000-4-3	10 V/m (80 MHz to 1 GHz); 3 V/m (1.4 GHz to 2 GHz); 1 V/m (2.0 GHz to 2.7GHz)
	Electrical fast transients (EFT)	IEC 61000-4-4/EN 61000-4-4	2kV (Input AC Power Ports)
	Surges	IEC 61000-4-5/EN 61000-4-5	1kV (Line to line) 2kV (Line to ground)
	Radio-frequency continuous conducted Immunity	IEC 61000-4-6/EN 61000-4-6	3 V, 0.15-80MHz
	Voltage dips and interruptions	IEC 61000-4-11/EN 61000-4-11	Voltage Dips: 0% UT during 1 cycle; 40% UT during 10/12 cycles; 70% UT during 25/30 cycles Voltage interruptions: 0% UT during 250/300 cycles
Safety	UL 61010-1:2012/R: 2018-11; CAN/CSA-C22.2 No. 61010-1:2012/A1:2018-11. UL 61010-2-030:2018; CAN/CSA-C22.2 No. 61010-2-030:2018.		
RoHS	EU 2015/863		

Power Supply	
Input Voltage & Frequency	100 ~ 240 Vrms 50/60Hz
1 7	A models: 400 W max., 210 W typical, 4 W typical in standby mode
Power consumption	AP models: 440 W max., 250 W typical, 4 W typical in standby mode

Mechanical	
	Width × Height × Depth
Dimensions	Without feet: 444.5mm × 334mm × 176.4mm
	With feet: 444.5mm×367mm×176.4mm
Weight	Net Weight 10.6 kg,
	Gross Weight 17.0 kg

Ordering Information

Model	Description
SDS7804AP	8 GHz, 20 GSa/s @ all channels, 4-CH, 12-bit, standard 1 Gpts/ch memory depth,
	15.6" capacitive touch screen
SDS7604AP	6 GHz, 20 GSa/s @ all channels, 4-CH, 12-bit, standard 1 Gpts/ch memory depth,
	15.6" capacitive touch screen
SDS7804A H12	8 GHz, 20 GSa/s, 4-CH, 12-bit, standard 500 Mpts/ch memory depth,
	15.6" capacitive touch screen
SDS7604A H12	6 GHz, 20 GSa/s, 4-CH, 12-bit, standard 500 Mpts/ch memory depth,
	15.6" capacitive touch screen
SDS7404A H12	4 GHz, 20 GSa/s, 4-CH, 12-bit, standard 500 Mpts/ch memory depth,
	15.6" capacitive touch screen
SDS7304A H12	3 GHz, 20 GSa/s, 4-CH, 12-bit, standard 500 Mpts/ch memory depth,
	15.6" capacitive touch screen

Standard Accessories	Quantity
USB cable	1
Quick start	1
Passive probe (SP3150A)	1/channel
Certificate of calibration	1
Wireless mouse	1
Power cord	1
Protective Cover	1

Optional Accessories	Description
SPL2016	16-channel logic probe: input impedance 100 k Ω 18 pF, input range ± 20 V, min. input swing 800 mVpp, max. data rate 300 Mbps (with leadset), 100 Mbps (without leadset)
DF2001A	Power Analysis deskew fixture
FX-USB2	USB 2.0 test fixture
FX-ETH	100M/1000M Ethernet test fixture
FX-MGETH	2.5G/5G/10G Ethernet test fixture
FX-AMETH	Automotive Ethernet test fixture
STB3	STB3 demo signal source
USB-GPIB	USB-GPIB adapter
SP6150A	High-speed passive probe: 1.5 GHz, 10X, input impedance 1.8 pF 500 Ω
SAP5000D	High-speed differential probe: 5 GHz, 10X, differential input impedance 400 fF 20 k Ω , input range \pm 2.5 V, offset range \pm 12 V, SAPBus interface
SAP2500D	High-speed differential probe: 2.5 GHz, 10X, differential input impedance 1 pF 200 k Ω , input range ± 4 V, offset range ± 8 V, SAPBus interface
SAP2500	High-speed active probe: 2.5 GHz, 10X, input impedance 1.1 pF \parallel 1 M Ω , input range \pm 8 V, offset range \pm 12 V, SAPBus interface
SAP1000	High-speed active probe: 1 GHz, 10X, input impedance 1.2 pF \parallel 1 M Ω , input range \pm 8 V, offset range \pm 12 V, SAPBus interface

HPB4010	High voltage passive probe: DC-40MHz, 1000X, input impedance 3.0 pF 100 M Ω , Max. input differential voltage DC: 0~10 kVDC, AC: ≤ 7 kVrms (Sinewave), 20 kVp-p (Pulse)
DPB1300	High voltage differential probe: 50 MHz, 50X/500X, Max. Differential Test Voltage (DC + Peak AC) ±1300 V, CATIII 600 V/CATII 1000 V, DC 12 V Power supply
DPB5150	High voltage differential probe: 70 MHz, 50X/500X, Max. Differential Test Voltage
DPB5150A	(DC + Peak AC) ±1500 V, CATIII 600 V/CATII 1000 V, USB 5 V Power supply High voltage differential probe: 100 MHz, 50X/500X, Max. Differential Test Voltage
	(DC + Peak AC) ±1500 V, CATIII 600 V/CATII 1000 V, USB 5 V Power supply High voltage differential probe: 70 MHz, 100X/1000X, Max. Differential Test Voltage
DPB5700	(DC + Peak AC) ±7000 V, CATIII 1000V, USB 5 V Power supply
DPB5700A	High voltage differential probe: 100 MHz, 100X/1000X, Max. Differential Test Voltage (DC + Peak AC) ±7000 V, CATIII 1000V, USB 5 V Power supply
SCP5030	Current probe: DC-50 MHz, 1 V/A and 0.1 V/A, Max. current 30 Arms/50 Apk, 300V, SAPBus interface
SCP5030A	Current probe: DC-100 MHz, 1 V/A and 0.1 V/A, Max. current 30 Arms/50 Apk, 300V, SAPBus interface
SCP5150	Current probe: DC-12 MHz, 0.1 V/A and 0.01 V/A, Max. current 150 Arms/300 Apk, CAT III 300 V/CAT II 600 V, SAPBus interface
SCP5500	Current probe: DC-2 MHz, 0.1 V/A and 0.01 V/A, Max. current 500 Arms/750 Apk, CAT III 300 V/CAT II 600 V, SAPBus interface
CPL5100	Current probe: DC-600 kHz, 0.1 V/A and 0.01 V/A, current range 50 mA~100 A pk, DC 12 V Power supply
CP4020	Current probe: DC-200 kHz, 50 mV/A and 5 mV/A, Max. current 20 Arms/60 Ap-p, CAT III 600 V/CAT II 600 V, DC 9 V Power supply
CP4050	Current probe: DC-1 MHz, 500 mV/A and 50 mV/A, Max. current 50 Arms/140 Ap-p, CAT III 300 V/CAT II 600 V, DC 9 V Power supply
CP4070	Current probe: DC-300 kHz, 50 mV/A and 5 mV/A, Max. current 70 Arms/200 Ap-p, CAT III 600 V/CAT II 600 V, DC 9 V Power supply
CP4070A	Current probe: DC-300 kHz, 100 mV/A and 10 mV/A, Max. current 70 Arms/200 Ap-p, CAT III 600 V/CAT II 600 V, DC 9 V Power supply
CP6030	Current probe: DC-50 MHz, 1 V/A and 0.1 V/A, Max. current 30 Arms/50 Apk, 300V, DC 12 V Power supply
CP6030A	Current probe: DC-100 MHz, 1 V/A and 0.1 V/A, Max. current 30 Arms/50 Apk, 300V, DC 12 V Power supply
CP6150	Current probe: DC-12 MHz, 0.1 V/A and 0.01 V/A, Max. current 150 Arms/300 Apk, CAT III 300 V/CAT II 600 V, DC 12 V Power supply
CP6500	Current probe: DC-5 MHz, 0.1 V/A and 0.01 V/A, Max. current 500 Arms/750 Apk, CAT III 300 V/CAT II 600 V, DC 12 V Power supply
SAP4000P	Power rail probe: DC - 4 GHz, 1.1X, input impedance 50 k Ω @low frequency, 50 Ω @high frequency, input range \pm 600 mV, offset range \pm 24 V, SAPBus interface
CASE-S2	Transit case
SDS7000A-RMK	Rack Mount Kit

Options	Description
SDS7000A-FG	Waveform generator (software)
SDS7000A-PA	Power Analysis (software)
SDS7000A-EJ	Eye Diagram/Jitter Analysis (software)
SDS7000A-I2S	12S trigger & decode (software)
SDS7000A-1553B	MIL-STD-1553B trigger & decode (software)
SDS7000A-FlexRay	FlexRay trigger & decode (software)
SDS7000A-CANFD	CAN FD trigger & decode (software)
SDS7000A-CANXL	CAN XL decode (software)
SDS7000A-SENT	SENT trigger & decode (software)
SDS7000A-Manch	Manchester decode (software)
SDS7000A-USB2	USB 2.0 decode (software)
SDS7000A-ARINC	ARINC429 trigger & decode (software)
SDS7000A-CT-USB2	USB 2.0 compliance test (software)
SDS7000A-CT-100BASE-T	100Base-TX compliance test (software)
SDS7000A-CT-1000BASE-T	1000Base-T compliance test (software)
SDS7000A-CT-2.5/5/10GBASE-T	2.5G/5G/10G Base-T compliance test (software)
SDS7000A-CT-100BASE-T1	100Base-T1 compliance test (software)
SDS7000A-CT-1000BASE-T1	1000Base-T1 compliance test (software)
SDS7000A-CT-DP	MIPI-DPHY compliance test (software)
SDS7000A-CT-DDR	DDR2/DDR3 compliance test (software)
SDS7000A-RFA	RTSA / DDC / Signal Analysis (software), A models
SDS7000A-1GPTS	1Gpts memory depth (software), A models
SDS7000AP-2GPTS	2Gpts memory depth (software), AP models
SDS7000A-BW3T4	3 GHz to 4 GHz bandwidth upgrade (software), A models
SDS7000A-BW6T8	6 GHz to 8 GHz bandwidth upgrade (software), A models
SDS7000AP-BW6T8	6 GHz to 8 GHz bandwidth upgrade (software), AP models
10M_OCXO_L	OCXO timebase (Assembled and calibrated in factory only)

Note: SDS7000 family oscilloscopes include 3 distinct hardware platforms: 3-4 GHz SDS7000A, 6-8 GHz SDS7000A, and SDS7000AP. It is not possible to upgrade between platforms. Bandwidth upgrades are available within the same platform only.

About SIGLENT

SIGLENT is an international high-tech company, concentrating on R&D, sales, production and services of electronic test & measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, isolated handheld oscilloscopes, function/arbitrary waveform generators, RF/MW signal generators, spectrum analyzers, vector network analyzers, digital multimeters, DC power supplies, electronic loads and other general purpose test instrumentation. Since its first oscilloscope was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test & measurement..

Headquarters:

SIGLENT Technologies Co., Ltd

Add: Bldg No.4 & No.5, Antongda Industrial Zone,

3rd Liuxian Road, Bao'an District,

Shenzhen, 518101, China

Tel: + 86 755 3688 7876

Fax: +86 755 3359 1582

Email: sales@siglent.com Website: int.siglent.com

North America:

SIGLENT Technologies NA, Inc

Add: 6557 Cochran Rd Solon, Ohio 44139

Tel: 440-398-5800

Toll Free: 877-515-5551

Fax: 440-399-1211

Email: info@siglentna.com Website: www.siglentna.com

Europe:

SIGLENT Technologies Germany GmbH

Add: Staetzlinger Str. 70 86165 Augsburg, Germany

Tel: +49(0)-821-666 0 111 0

Fax: +49(0)-821-666 0 111 22

Email: info-eu@siglent.com Website: www.siglenteu.com

Malaysia:

SIGLENT Technologies (M) Sdn.Bhd.

Add: NO.6 Lorong Jelawat 4

Kawasan Perusahaan Seberang Jaya

13700, Perai Pulau Pinang

Tel: 006-04-3998964

Email: sales@siglent.com Website: int.siglent.com

